Блок питания: с регулировкой и без, лабораторный, импульсный, устройство, ремонт

Охлаждение лабораторного блока питания

Самым горячим элементом лабораторного блока питания является регулирующий силовой транзистор T1. Тепло, рассеиваемое на нем пропорционально разнице между входным и выходным значениями напряжения. Транзистор 2N3055 способен рассеять максимум 115Вт.

Таким образом, если на входе стабилизатора 37В, а на выходе мы установим значение 3В, то при токе 2,5А на транзисторе рассеивается примерно (не учитывая падение на шунте R4):

P=(37В-3В)×2,5А=85Вт.

Это рядом с максимумом, учитывая, что транзистор T1 будет работать в линейном режиме и отвести от него такое количество тепла будет очень сложно. Выходом будет применение радиатора с вентилятором от ПК или применение радиатора с достаточно большой площадью поверхности (читать ниже).

При эксплуатации лабораторного блока питания с нагрузкой 1,5А – 2,5А на диодный мост можно установить небольшой теплоотвод в виде алюминиевой пластинки.

Если представить максимально тяжелый режим и на выходе лабораторного блока питания будет короткое замыкание, то в этом случае на транзисторе T1 упадет практически все напряжение (без учета падения на R4), пусть это падение будет равно 35В (берем по максимуму). При этом максимальный ток будет равен 2,5А. Мощность, рассеиваемая на транзисторе T1, будет примерно равна 80-90 Вт. Для такой мощности необходим радиатор с площадью поверхности 1500 – 2000 см2.

Кабели и соединения

Одним из основных требований к блоку была возможность отсоединения от него увлажнителя, чтобы его можно было унести, помыть и т.д. Сами генераторы тумана изначально идут с довольно длинными кабелями с гнёздами на конце, похожими на гнёзда в ноутбуках ASUS – собственно, ещё одна причина, почему все сразу пробуют запитать эти генераторы от ноутбучных блоков питания. Найти такие штекеры не составило труда, поэтому для генераторов я свил из двух хороших медных проводов достаточного для несколькольких ампер сечения двухжильный кабель с помощью шуруповёрта и вывел его наружу, припаяв на конец парочку штекеров. Этот кабель с жёлтым и голубым проводами хорошо видно на фотках выше.

Для слаботочных кулера и ленты я сделал удлинитель из кабелей с разъёмами и штекерами от телевизоров Горизонт – как раз за пару недель до этого распаивал несколько плат от них, так что они подоспели вовремя. Разъёмы эти хоть и страшные, но их всё равно не видно: они спрятаны за столом и его стойками. Единственная проблема с ними – их можно по ошибке умудриться подключить наоборот. Чтобы избежать этого, я с одной стороны промаркировал коннекторы чёрным маркером.

Сам кулер был уже с заводским разъёмом, поэтому для него пришлось колхозить штекер, как на фото ниже:

Честно признаюсь, этот двухконтактный штекер получился неудачным: там периодически пропадает контакт и вообще иногда вся эта хрень вываливается из разъёма – просто у меня не было нужной ответной части с фиксатором. А эти страшные телевизионные разъёмы напротив, сидят очень крепко и надёжно, к ним никаких претензий нет!

Между 1 ножкой ШИМ и выходом плюс, припаиваем резистор

Данный резистор будет ограничивать напряжение выдаваемое БП. Этот резистор и R60 образует делитель напряжения, который будет делить выходное напряжение и подавать его на 1 ножку.

Входы ОУ(ШИМ) на 1-й и 2-й ножках у нас служат для задачи выходного напряжения.

На 2-ю ножку приходит задача по выходному напряжению БП, поскольку на вторую ножку максимально может прийти 5 вольт (vref) то обратное напряжение должно приходить на 1-ю ножку тоже не больше 5 вольт. Для этого нам и нужен делитель напряжения из 2х резисторов, R60 и тот что мы установим с выхода БП на 1 ногу.

Как это работает: допустим переменным резистором выставили на вторую ногу ШИМ 2,5 Вольта, тогда ШИМ будет выдавать такие импульсы (повышать выходное напряжение с выхода БП) пока на 1 ногу ОУ не придёт 2,5 (вольта). Допустим если этого резистора не будет, блок питания выйдет на максимальное напряжение, потому как нет обратной связи с выхода БП. Номинал резистора 18,5 кОм.

Как подобрать компоненты

Для трансформаторного источника подбирается, в первую очередь, трансформатор. В большинстве случаев он берется готовый из того, что есть. Этот узел должен выдавать требуемый ток при максимальном напряжении. Сочетание этих параметров обеспечивается габаритной мощностью трансформатора. Для промышленных устройств параметры можно узнать из справочника. Для случайных трансформаторов мощность можно определить по размерам сердечника (в сантиметрах).

Площадь сердечника для разных типов трансформаторов.

Мощность вычисляется по формуле:

P=S2/1.44 где:

  • P-мощность в Ваттах;
  • S— сечение в квадратных сантиметрах.

Если трансформатор проходит по мощности, но вторичная обмотка рассчитана на другое напряжение, ее можно удалить и намотать новую (если уместится). Количество витков рассчитывается так:

  • определяется количество витков на вольт по формуле 50/S, где S – площадь сердечника в кв.см.;
  • эта величина умножается на необходимый уровень напряжения.

Так, для площади 6 см на 1 вольт приходится 50/6=8,3 витка на вольт. Для напряжения 35 вольт обмотка должна иметь 35*8,3=291 виток. Диаметр провода рассчитывается по формуле D=0,02, где I – ток в миллиамперах. Для тока в 5 ампер надо взять провод диаметром 0,02*=70*0,02=1,4 мм.

Если для линейного регулятора подбирается мощный транзистор, основной критерий для применения – ток коллектора. Он должен с запасом перекрывать ток нагрузки. Этот параметр для распространенных отечественных и зарубежных транзисторов приведен в таблице.

ТранзисторНаибольший ток коллектора (постоянный), А
КТ818 (819)10
КТ825 (827)20
КТ8055
TIP3625
2N305515
MJE1300912

При работе в режимах, близких к максимальному току, транзисторы обязательно должны быть установлены на радиаторах.

Также надо обратить внимание на такой параметр, как максимальное напряжение между коллектором и эмиттером. При входном напряжении 35 вольт и выходном 1,5 разница составит 33,5 вольт, для некоторых полупроводниковых приборов это недопустимо

Емкость оксидного конденсатора, стоящего после выпрямителя, выбирается исходя из нагрузки. Существуют формулы для расчета параметров фильтра, но на практике подход простой: чем больше, тем лучше. Сверху на емкость наложено два ограничения:

  • габариты конденсатора;
  • бросок тока на заряд, который может быть значительным при большой емкости.

Выходной конденсатор БП может иметь емкость около 1000 мкФ.

Печатная плата

Печатная плата имеет размеры 72×75мм. Она взята из ветки форума по разработке ПиДБП. Разведена плата без выпрямителя и фильтрующих конденсаторов, то есть, только сам стабилизатор.

Номера выводов каналов микросхемы DA1 на схеме и печатной плате разнятся, точнее каналы подключены по принципу разводки печатной платы (как проще, так и подключены). Вообще без разницы, какой канал из четырех будет DA1.1, а какой будет DA1.2 и так далее, главное соблюдать схему подключения.

Для удобства, монтаж необходимо начинать с перемычек и резисторов.

Далее монтируются все остальные компоненты, от меньших к большим.

Импульсный блок питания

Для обеспечения нагрузки майнеров применяются ИБП различной мощности. В данном материале подробно рассматривается блок питания применяемый для разных моделей асиков.

В конструкцию ИБП APW7 входит:

  • корпус – из экранированной металлической коробки
  • печатная плата ИБП имеет установленные радиотехнические компоненты
  • система охлаждения состоит из принудительного вентилятора
  • провода необходимые для подключения нагрузки

Основную функцию выполняет плата с расположенными на ней элементами.

Сторона монтажа APW7

Элементы расположенные на печатной плате ИБП:

  1. FUSE предохранитель
  2. Варистор
  3. Конденсатор сетевого фильтра
  4. Дросселя
  5. Блокировочные конденсаторы
  6. Конденсатор сглаживающий
  7. Фильтрующие конденсаторы
  8. Силовые транзисторы
  9. Разъем для подключения вентилятора
  10. Сглаживающие конденсаторы синхронного выпрямителя
  11. Выходной трансформатор
  12. Диод
  13. PFC транзистор
  14. Терморезисторы NTC
  15. Реле
  16. Дроссель схемы PFC
  17. Диодный мост

Сторона печати APW7

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична

Импульсный трансформатор

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

Схема простого БП

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Печатная плата простого БП

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения

Двухполярный ИП на транзисторах

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Схема импульсного блока питания

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится

Лабораторный БП своими руками

Изготовление импульсных БП требует наличие опыта от радиолюбителя, поэтому назвать его простым никак не получится.

Для построения несложного БП лучше применить схему на сетевом трансформаторе. Его можно использовать, приспособив готовый, переделать или намотать самому. Намоточные данные и другие параметры представлены в таблице.

Выпрямитель, в зависимости от количества вторичных обмоток трансформатора, делают по мостовой схеме или со средней точкой. 

Конденсаторы фильтров (Рисунок 7) ёмкостью от 470 до 3300 мкф, стабилитрон подбирают под максимальное напряжение стабилизации. В качестве стабилизатора используют схему с картинки 5. Для двухполярного питания во втором плече транзисторы применяют другой структуры. Также, возможно использовать аналогичные стабилизаторы с защитой, но подключенные по схеме Б (Рисунок 8, верхняя часть).

Настраивание БП сводится к установке требуемых пределов регулировки напряжения и тока срабатывания защиты с указанием меток на лицевой панели устройства. Для отображения выходного напряжения и тока потребления можно применить готовые цифровые или стрелочные индикаторы.

— вход на амперметр, красный 

— выход на нагрузку как минусовой электрод. Попытка подключения плюсового источника питания в цепь амперметра с уже подключенными проводами вольтметра вызывает КЗ в схеме устройства с выходом его из строя.

Видео ролик подключения вольтамперметра DSN-VC288

на 100В и 10А (подробное описание дам в отдельной статье):

Инструменты, которые пригодятся при изготовлении нашего прибора:

1. Паяльник. 2. Отвертки. 3. Сверлильный станок или дрель. 4. Сверла. 5. Напильник или надфиль. 5. Наждачная шкурка. 6. Канцелярский нож. 7. Гаечные ключи. 8. Измерительный инструмент, как минимум линейка. 9. Начертательный инструмент, карандаш. 10. Кернер. 11. Пассатижи или плоскогубцы. 12. Отрезная машинка (болгарка) с отрезным кругом и шлифовальным.

Нужные Расходные материалы:

1. Припой. 2. Паяльная кислота. 3. Болты и гайки. 4. Монтажные провода. 5. Повышающий преобразователь напряжения. 6. Вольтамперметр 100В, 10А. 7. Вилочки, разъемчики и прочая мелочь. 8. Выключатель. 9. Переменный резистор. 10. Термоусадочные трубки.

Порядок изготовления регулируемого блока питания:

1. Найти старый, рабочий компьютерный блок питания. 2. Вскрыть, основательно, но аккуратно почистить от накопившейся пыли и грязи. 3. Выпаять из связки лишние провода, оставить черный минус питания, желтый 12В плюс, оранжевый 3.3В плюс, красный 5В плюс, и зеленый для включения блока питания. 4. На лицевой панели блока питания высверлить и развернуть напильником отверстия для монтажа приборов контроля, ручек управления и разъемов снятия напряжения с нашего прибора. 5. Выпаять из повышающего преобразователя напряжения подстроечный резистор, на его место впаять переменный резистор 10 ком. 6. Провести пайку проводов блока питания, подробно показано в видео ролике, не пугайтесь, все очень просто, главная проблема не обжечь пальцы паяльником :-). 7. На лицевой панели разместить и закрепить вольтамперметр, ручку управления, выключатель и разъемы снятия напряжения. 8. Подключить подготовленные провода к вольтамперметру, ручке управления, выключателю и разъемам снятия напряжения. 9. Подключенный через монтажные провода повышающий преобразователь напряжения разместить и зафиксировать в нашем блоке питания. Штатное место показано в видеоролике. 10. Собрать корпус получившегося блока питания. 11. Подключить блок питания к сети 220В. 12. Щелкнуть тумблером включения прибора. 13. На вольтамперметре должно высветится напряжение. 14. Провести настройку и тестирование регулируемого блока питания под нагрузкой.

Технический анализ:

Плюсы: 1. бюджетные затраты на комплектующие конструкции. 2. достаточная компактность. 3. Простота изготовления. 4. Простота эксплуатации.Минусы: 1. Недостаточная точность прибора, от 10 мА. 2. Напряжение регулируется от 12В. 3.3 и 5В фиксированное напряжение. Но над этим работаем.

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Схема простого и доступного БП 0…50В (версия v16y2)

Схема состоит из следующих узлов: выпрямитель с фильтром, стабилизатор напряжения +12В, стабилизация напряжения, стабилизация тока, индикация, регулирующий узел и защита от перегрева.

Выпрямитель состоит из понижающего трансформатора TV1, диодного моста VDS1 и фильтра C1.

Стабилизатор напряжения +12В выполнен на основе микросхемы VD1 и на транзисторе VT1. Стабилизированным напряжением +12В питается операционный усилитель DA1. Также это значение используется, как источник опорного напряжения в узлах регулировки.

Регулирующий узел состоит из двух транзисторов VT2 и VT4, включенных по схеме составного транзистора для увеличения коэффициента усиления. VT4 является самым нагруженным элементом. На нем рассеивается большое количество тепла, пропорциональное разности между входным и выходным напряжением при протекании через него тока нагрузки. Транзисторами VT2 и VT4 управляет VT3.

Как видно по схеме, транзистор VT2 прямой проводимости (PNP). Ниже представлена схема включения транзистора с обратной проводимостью NPN. Именно под такую структуру (NPN) транзистора VT2 разведена печатная плата (ссылка под статьей).

Узел стабилизации напряжения выполнен на ОУ DA1.1, который сравнивает часть напряжения с выхода лабораторного блока питания (инверсный вход) с частью опорного значения (прямой вход), а сигнал рассогласования поступает на базу транзистора VT3.

Узел стабилизации тока выполнен на ОУ DA1.2, который сравнивает падение напряжения на шунте R27 (падение на нем пропорционально току нагрузки ЛБП) с частью опорного значения. Сигнал рассогласования поступает на транзистор VT3. Узлы стабилизации тока и напряжении работают параллельно и это плюс в скорости работы системы автоматического регулирования.

Узел индикации выполнен на ОУ DA1.4, работающим как компаратор, который управляет свечением светодиодов HL1 и HL2 в зависимости от режима стабилизации (тока или напряжения). Этот узел не обязателен, но мне очень удобно видеть порог включения режима стабилизации тока при проверке некоторых устройств.

При замкнутом ключе S1 блок питания перестает работать в режиме стабилизации тока, а включается триггерная защита (DA1.2 взаимодействует с DA1.4), которая при превышении установленного порога снижает до нуля выходной ток ЛБП до тех пор, пока не будет разорван ключ S1.

Узел тепловой защиты также не обязателен и монтаж его элементов выполняется по желанию. Выполнен он на операционном усилителе DA1.3. Этот операционный усилитель сравнивает часть опорного значения со значением делителя R31R32. При росте температуры сопротивление R31 уменьшается и на инверсном входе DA1.3 потенциал увеличивается и когда он будет больше чем потенциал на прямом входе (установленное значение с помощью R34) то на выходе DA1.3 появится земля (GND). При этом светодиод HL3 засветится, транзистор VT3, а вслед за ним VT4 и VT2 закроются. На выходе блока питания будет нуль. Это полезная функция, если габариты теплоотвода транзистора VT2 не позволяют долговременно рассеивать необходимую мощность. Также, это полезно, если радиатор силового транзистора установлен внутри корпуса, без принудительного охлаждения.

Подстроечный резистор R22 позволяет выставить максимальное напряжение на выходе блока питания под возможности трансформатора. Его необходимо подстраивать на номинальном токе.

Переменным резистором R26 регулируется ток, а резистором R20 регулируется напряжение.

Диод VD2 защищает элементы схемы от встречного напряжения. Это необходимо, когда к блоку питания подключается аккумулятор или устройство с заряженными емкостями.

Диод VD5 защищает от перепутывания полярности при подключении нагрузки, например того же аккумулятора или заряженной емкости.

Умощнение схемы

Я считаю это немаловажная тема, так как многим радиолюбителям нужен лабораторный блок питания с нагрузочной способностью до 3А и более.

Умощнение схемы ПиДБП заключается в параллельном соединении дополнительных силовых транзисторов VT2. Количество транзисторов определяется исходя из мощности. Так для блока питания 30В 3А необходимо устанавливать два транзистора 2N3055.

Так как транзисторы имеют разброс параметров, то в разрыв эмиттеров необходимо устанавливать мощные (2Вт) выравнивающие резисторы 0,1Ом. Без выравнивающих резисторов силовые транзисторы могут выйти из строя в виду неравномерно распределенного тока нагрузки между ними.

Вторым этапом умощнения является изменение номинала шунта R27, иначе выходной ток будет ограничен значением 1,4А.

Номинал R27 выбирается исходя из следующего правила: при максимальной нагрузке падение напряжения на R27 должно быть 500мВ.

Rш=0,5В/Imax.

Для тока 3А сопротивление шунта 0,166Ом (из стандартного ряда 0,15Ом). Для 5А выбираем 0,1Ом.

Емкость C1 выбирается исходя из минимальных требований 2000мкФ на 1А, иначе будут значительные пульсации.

Ну и не забываем про диодный мост, его ток должен выбираться с запасом.

Больше никаких изменений в схеме делать не нужно.

Печатная плата ПиДБП 0..50В СКАЧАТЬ

Основные узлы регулируемого блока питания

Трансформаторный источник питания в большинстве случаев выполняется по следующей структурной схеме.

Узлы трансформаторного БП.

Понижающий трансформатор снижает напряжение сети до необходимого уровня. Полученное переменное напряжение преобразуется в импульсное с помощью выпрямителя. Выбор его схемы зависит от схемы вторичных обмоток трансформатора. Чаще всего применяется мостовая двухполупериодная схема. Реже – однополупериодная, так как она не позволяет полностью использовать мощность трансформатора, да и уровень пульсаций выше. Если вторичная обмотка имеет выведенную среднюю точку, то двухполупериодная схема может быть построена на двух диодах вместо четырех.

Двухполупериодный выпрямитель для трансформатора со средней точкой.

Если трансформатор трехфазный (и имеется трехфазная цепь для питания первичной обмотки), то выпрямитель можно собрать по трехфазной схеме. В этом случае уровень пульсаций наиболее низок, а мощность трансформатора используется наиболее полно.

После выпрямителя устанавливается фильтр, который сглаживает импульсное напряжение до постоянного. Обычно фильтр состоит из оксидного конденсатора, параллельно которому ставится керамический конденсатор малой емкости. Его назначение – компенсировать конструктивную индуктивность оксидного конденсатора, который изготовлен в виде свернутой в рулон полоски фольги. В результате получившаяся паразитная индуктивность такой катушки ухудшает фильтрующие свойства на высоких частотах.

Далее стоит стабилизатор. Он может быть как линейным, так и импульсным. Импульсный сложнее и сводит на нет все преимущества трансформаторного БП в нише выходного тока до 2..3 ампер. Если нужен выходной ток выше этого значения, проще весь источник питания выполнить по импульсной схеме, поэтому обычно здесь используется линейный регулятор.

Выходной фильтр выполняется на базе оксидного конденсатора относительно небольшой емкости.

Обобщенная блок-схема импульсного БП.

Импульсные источники питания строятся по другому принципу. Так как потребляемый ток имеет резко несинусоидальный характер, на входе устанавливается фильтр. На работоспособность блока он не влияет никак, поэтому многие промышленные производители БП класса Эконом его не ставят. Можно не устанавливать его и в простом самодельном источнике, но это приведет к тому, что устройства на микроконтроллерах, питающиеся от той же сети 220 вольт, начнут сбоить или работать непредсказуемо.

Дальше сетевое напряжение выпрямляется и сглаживается. Инвертор на транзисторных ключах в цепи первичной обмотки трансформатора создает импульсы амплитудой 220 вольт и высокой частотой – до нескольких десятков килогерц, в отличие от 50 герц в сети. За счет этого силовой трансформатор получается компактным и легким. Напряжение вторичной обмотки выпрямляется и фильтруется. За счет высокой частоты преобразования здесь могут быть использованы конденсаторы меньшей емкости, что положительно сказывается на габаритах устройства. Также в фильтрах высокочастотного напряжения становится целесообразным применение дросселей – малогабаритные индуктивности эффективно сглаживают ВЧ пульсации.

Регулирование напряжения и ограничение тока выполняется за счет цепей обратной связи, на которые подается напряжение с выхода источника. Если из-за повышения нагрузки напряжение начало снижаться, то схема управления увеличивает интервал открытого состояния ключей, не снижая частоты (метод широтно-импульсного регулирования). Если напряжение надо уменьшить (в том числе, для ограничения выходного тока), время открытого состояния ключей уменьшается.

Возможно заинтересует: Как из старого блока питания компьютера сделать зарядное устройство

↑ Защита блока питания от перегрузки

На схеме электрической принципиальной две «земли» до датчика тока (шунта R8, R12) и после. За основную следует принимать землю справа, по схеме, от шунта, так как относительно нее подключены стабилизаторы напряжения DA2, DA3, и DA5-DA8 через отрицательное плечо -5V (DA2). Это позволяет не учитывать падение напряжения на шунте при стабилизации. То есть относительно стабилизатора DA5, шунт можно отнести к внутреннему сопротивлению источника напряжения. Защита блока питания от перегрузки представляет собой токоограничение и организовано на компараторе OP2 (LM339) отличительной чертой которого является выход с открытым коллектором. На отрицательный вход подается опорное напряжение с делителя R19, R22 на положительный вход – напряжение с датчика тока на резисторах R8, R12.

Определяет величину токоограничения резистор R19, который можно также выносить на переднюю панель прибора (это может быть полезным), но я этого не сделал, так как сначала спроектировал корпус и только потом схему. При коротком замыкании, например, напряжение на положительном входе OP2 становится ниже чем на отрицательном и выходной транзистор компаратора OP2 начинает открываться, так же как и T5 начинает понижать потенциал на входе ADJ стабилизатора LM317.

За счет высокого коэффициента усиления компаратора токоограничение получается изумительное. За 10mА до планки ограничения стабилизация напряжения не нарушается. Например в проведенном мной эксперименте ток короткого замыкания 2,94А, при нагрузке 2,93А напряжение остается стабильным — при снятии нагрузки показания вольтметра не меняются.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий